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The power spectrum of the wall pressure that would be measured by a trans- 
ducer of vanishingly small size and the corrections to the power spectra measured 
by finite-size transducers are determined from the spectra measured by four 
transducers of different diameters. The root-mean-square wall pressure measured 
by a transducer of vanishingly small size is JP/rw = 2.66, approximately 13 yo 
higher than the root-mean-square pressure measured by the transducer used 
in the earlier investigations of Willmarth & Wooldridge (1962). Corrections 
to the power spectrum measured by a finite-size transducer are computed using 
the theory of Uberoi & Kovasznay (1952, 1953). The computations require 
information about the correlation of the wall pressure for very small spatial 
separation of the transducers. Unfortunately, these measurements have never 
been made. Corcos’s (1964) similarity of the cross-spectral density is assumed to  
represent the missing information, but the computed corrections fail at high 
frequencies because the similarity expression is not valid when the spatial 
separation is small. The range of validity of the similarity is determined, and the 
average radial derivative of the cross-spectral density is inferred from the 
measured power spectra. 

1. Introduction 
Measurements of the statistical properties of a random field made with trans- 

ducers of finite size will be affected by the shape and size of the transducer. 
It is the purpose of this paper to investigate the effect of a finite-size circular 
transducer on measurements of the wall pressure beneath a turbulent boundary 
layer. The investigation depends upon the fact that a complete and accurate set 
of wall-pressure measurements can be corrected for the effect of the transducer 
if the transducer responds linearly to the pressure. 

I n  the body of the paper the theory (Uberoi & Kovasznay 1952) for correcting 
the measurements is outlined. Computations of the corrections to the pressure 
are attempted using Corcos’s (1964) similarity model for the measurements of 
Willmarth & Wooldridge (1962). The computations are inaccurate a t  high fre- 
quencies and cannot be improved because the set of measured data upon which 
everything depends is not complete (the pressure correlation a t  small spatial 
separations, l < l  < 0-76*, of the transducers is not known). 
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The power spectra measured with transducers of four different diameters 
(Willmarth & Wooldridge 1963) are used to determine the corrections to the 
measured spectra. Analysis of the experimentally measured corrections of the 
power spectra shows that Corcos's (1964) similarity model for the cross-spectral 
density is not valid for spatial separations less than 0.76". The average radial 
derivative of the cross-spectral density is determined. The paper ends with some 
general remarks about the effect of a finite-size transducer on the measurement 
of wall pressure. 

2. Relations between measured and true wall pressure 
The mapping of a stationary stochastic function of several variables by an 

instrument with a linear response has been treated by Uberoi & Kovasznay 
(1952, 1953) and by Liepmann (1952). The result of their work is the conclusion 
that, if the properties of the instrument and the mapped stochastic function 
are completely known, the properties of the original stochastic function can be 
recovered. 

We present these relations in a notation appropriate to the problem of the 
resolution of a pressure field by a flat transducer of finite size mounted flush with 
a wall. The mapped stochastic property that has been measured is the pressure 
correlation 

where the brackets indicate an average. The vectors c([ ,q)  and x(x,y) lie 
in the plane of the wall and the subscript m denotes a measured quantity. The 
pressure has zero mean and is homogeneous in the plane of the wall. The measured 
pressure pm is related to the true pressure p by 

pm(x, t )  = 1 p ( s ,  t )  ~ ( s - x )  d ~ ( s ) ,  ( 2 )  
W 

where K ( s  - x) is the response kernel characterizing the spatial response of the 
pressure transducer. (The transducer is assumed to respond instantly to the 
applied pressure, and K depends only on s - x.) For a statistically homogeneous 
pressure field, the measured pressure correlation may then be expressed as 

Rp(< + E, 7) K ( s )  K ( s  + E) dA (s) dA (E). 7) = J J 
W 

(3) 

The essence of the problem we shall consider is the solution of this integral 
equation (3). The original pressure correlation Rp(c, 7) is to be determined from a 
knowledge of K ( s )  and Rpm(<,7). We will not actually compute Rp but will 
be concerned with computing the temporal Fourier transform of Rp(0,7) (the 
power spectrum of the pressure). 

We define the spectrum of the pressure in space and time 

where w is the circular frequency and k(k,, k,) is the wave-number vector in the 
plane of the wall. The corresponding inverse relation is 

Rp(<, 7) = 1- 1 E( k, w )  exp [ i ( w ~  + k . <)I dw dA (k). (5) 
W 
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We will also need the cross-spectral density 

and the power spectrum 
(7) 

The corresponding measured quantities Em(k, w ) ,  rrn(G, w ) ,  and $rn(w) are defined 
in the same way (with the measured correlation Rpm(<,7) substituted for 

In  order to solve for the original power spectrum of the pressure, we must 
R&, 7))- 

invert equation (3). We define the ‘correlation’ of K ( s ) ,  

We recognize that the Fourier transform of a function Rpm which is the convolu- 
tion of two functions is the product of their respective transforms. Equation (9) 
becomes 

Ek(k, 7) = 4n2E‘(k, 7) $(k), (10) 

where 

and 
1 

$(k) = GJ O(E)exp(-ik.E)dA(E). 
m 

We determine E’(k,  7) from equation (10) and use the inverse of equation (1  1) 
to determine 

We shall be interested in the cross-spectral density obtained from the temporal 
Fourier transform of equation (13) 

and the power spectrum 

$(k) is the spatial ‘spectrum’ of the transducer and is easily computed from 
equation (S), where O(E) is expressed as the convolution of K ( s ) .  The Fourier 
transform of O(E) is 

I” 1 
$(k) = s[S K(s)exp(-ik.s)dA(s) . 

m 
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3. Computation of the original power spectrum from the measured 
pressure field 

Equation (15) of the previous section gives the relation with which the original 
power spectrum of the pressure may be computed from quantities measured by 
the finite-size transducer. Measurements of the boundary-layer wall-pressure 
field have been reported by Willmarth & Wooldridge (1962) and more recently 
by Bull (1963). Corcos has used the measurements of Willmarth & Wooldridge 
in his work and proposed (Corcos 1962,1963,1964) the use of the similarity vari- 
able w</ U ,  to simplify the expressions for the measured cross-spectral density. 

where A(wt/U,), B(wq/U,), and V,(wS*/U,) are reproduced from Corcos (1963) 
in figures 1-3. Corcos (1962 or 1964) also shows by numerical integration that 

RP&, 7 )  = Im $m(W) A(wC/v,) B(wr/Uc) exp [ i (w7  - w f / q ) I  d o  (18) 

gives a good representation of the measured space-time correlation for the 
special cases Rpm(E, 0 ,7 )  and Rpm(O, q, 0). 

In  order to evaluate equation (15), we will use equation (17), and we need 
$(k) for the particular transducer used in the measurements. The transducer 
was circular with a radius R equal to 0.1666* (see Willmarth & Wooldridge 
1962). Therefore, if we assume that the response of the transducer is instantaneous 
and spatially uniform (see equation (2)), 

K ( s )  = l/nR2, I S [  < R , }  

= 0, Is1 > R. 

From equation (16) we determine 

and from equation (17) we determine 

I n  the dimensionless form that we used for our computations, equation (15) 
can be written 

where k*2 = k:2+ k:2, kZ2 = cY*kl,2, R* = R/6* and 

By a change of variables it is easy to show that $/$m is a function of wR/U, only. 
In  our computations we were not able to evaluate the integral of equation (22) 

exactly because the zeros of Jl(k*R*) cause it to diverge. Fm of equation (23) 
does not have any zeros; however, it  should have zeros at the same points as 
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the zeros of J,(k*R*) because equation (10) shows that, when $(k)  is zero, the 
measured spatial spectrum Ek(k, 7) should also be zero.? (If E'(k, 7 )  is finite, 
as it must be since Rp is not periodic and since Rp = 0 when < -+ 00, the ratio 
EL/$ must also be finite.) The source of the difficulty is the measurement of 
Rp,(<, 7). All the measurements of lip,(<, 7) (Willmarth & Wooldridge 1962) 
were made with I<] > 0.668" or l<l > 3.9612. On the other hand, the transducer 
' correlation', equation (8) ,  whose spatial Fourier transform @(k)  produces the 
zeros of the measured spatial spectrum E,(k, w ) ,  is non-zero onlywhenthespatial 
separation of the transducers is less than 2R, 1.1 < 2R. It is apparent that I'&, w ) ,  
given in equation (17), does not contain enough experimental information about 
lip,(<, 7) to correct properly the measured power spectrum $,(w). 

Putting aside these remarks for the moment, we know from Corcos (1964), for 
instance, that his expression for the measured cross-spectral density, equation 
(17), gives an acceptable representation of lip,([, 0,7) for > 4R. We expect 
that at low frequencies the major contribution to E,(k,w) will occur at small 
wave numbers because the wall pressure fluctuations at low frequencies are 
produced by an essentially frozen large-scale eddy pattern carried past the 
transducer at the speed U,. The high-wave number contribution of E,(k,w) 
to the low-frequency power spectrum will be negligible, and the incorrect 
divergent portions of the integral of equation (22), giving the corrected con- 
tributions to $(@) from high wave numbers, can safely be ignored by limiting 
the range of integration in equation (22). 

We have computed the quantity F, of equation (23) by fitting a sum of ex- 
ponential functions to Corcos's A and B. The expressions used were 

(24) A ( y )  = exp ( - 0-11451y[) + 0.11451yl exp ( -  2-5/71) ,  

B(B) = 0-155exp ( -  0.0921,8I) + 0.70exp ( -  0.789[,81) 

+ 0-145exp ( -  2.916181) + 0.991,8/ exp ( -  4.0],81). (25) 

The fit obtained is shown in figures 1 and 2.  The last terms on the right-hand 
side of equations (24) and (25) were chosen to make A'(0) and B'(0) zero. In  
figures 1 and 2, showing A ( y )  and B(P), the slope at the origin is negative. Our 
addition of the extra term is conservative and reduces the magnitude of the 
spatial spectrum E,(k,w) at high wave numbers, but not significantly. We 
investigated the effect of omitting these two terms in the computation but found 
no significant change in the results or conclusions. 

We have computed the integral for $(w)/$,(w) using equation (22) at four 
different frequencies, with R* = 0, out to wave numbers Ic* < 16 and k* < 18 
with the result shown in table l.$ The results show that at low frequencies the 

t In actual experiment, Ek(k, T )  may not be exactly zero because unavoidable noise 
will always be present in the measuring apparatus or experimental environment. The 
consideration of noise does not concern us here because the experimental information 
upon which Ek(k, T )  is baaed is so limited (see below) that E; does not show any tendency 
to oscillate or have zeros. 

$ The integration of equation (22) was performed by weighing contours of constant 
Fm or Fm[$(k)]-l cut from paper of uniform thickness. The errors in this process are 
responsible for $ ( W ) / $ ~ ( W )  > 1 at  R* = 0, wS*/U, = 0.5. 
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Y 
FIGURE 1. The function A(y) ,  y = wc/U,. - , A(y) determined by 

Corcos (1963); ----, exp ( - 0 . 1 1 4 5 ~ ) ;  0, equation (24). 

I -- I 1 

0 4 8 12 16 
P 

FIGURE 2. The function B(P), ,8 = wqJU,. __ , B(P) determined by 
Corcos (1963); ----, exp ( -0 .7P) ;  0, equation (25). 

k* < 16 - 
R* = 0 R* = 0.166 

wS*JU, oRJU, 4 l + m  &I+ 
0.5 0.109 1.023 0.957 
2.0 0.468 0.970 0.758 
4.0 1.006 0.824 0.627 
6.3 1.660 0.626 0.535 

k* G 18 
n 

I \ 

R* = 0 R* = 0.166 

+/$m k l +  
1.024 0-952 
0.980 0.700 
0.870 0.488 
0.694 0.389 

TABLE 1. Results of computations of the ratio using equation (22). 
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ratio [ 4 ( 0 ) / 4 ~ ( ~ ) ] ~ . = ~  is nearly one, but, as the frequency increases, more and 
more contributions of the spatial spectrum Em(k, w )  at high wave numbers are 
missing. We then computed the correction to q 5 m ( ~ )  for R* = 0.166 and k* < 16 

1.0 1 

0 4 8 12 16 

1.0 - 

0.6 - 

I I 
0 4 8 12 16 

OS*/U, 

FIGURE 3. The dependence of convection velocity on frequency 
(Corcos 1963). 

and zG* < 18 with the results also shown in table 1. We may place considerable 
confidence in the correction for wS*/U, = 0-5 and possibly 2-0, because a correc- 
tion has been applied to most of the measured spatial spectrum Em which is 
included in the limited range of integration. Our confidence becomes uncertainty 
as wS*lU, increases, and less of the measured spatial spectrum is included in the 
limited range of integration. 

k? 

FIGURE 4. Representative contours of constant values of the integrand 
of equation (22) with R* = 0. 

An example of the character of the integrand of equation (22) is shown in 
figures 4 and 5 for just one frequency wS*/U, = 2. We see that there are ridges 
of large F,(k,*,k;) extending in the k,* and k: directions that receive a rather 
large correction for k" = 18 (the first zero of $(k) occurs at k* + 23). The error 
in the model for w> has a very serious effect for wS*/U, 2 4. 
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kr 
FIGURE 5. Representative contours of constant values of the integrand 

of equation (22) with R* = 0.166. 

4. Experimental measurements with different size transducers 
A suggestion by Corcos and our inability to correct properly earlier measure- 

ments of the power spectrum (Willmarth 1961) led us to measure the wall 
pressure spectrum (see appendix of Willmarth & Wooldridge 1963) with four 
circular transducers of different diameters. The results of the measurements are 
displayed in figures 6 and 7. The experimentally measured values of the various 
spectra are shown in figure 6. Smooth curves through these points were drawn, 
and at certain frequencies cross-plots of the spectral amplitude &(w) as a function 
of transducer radius R were made from the faired curves. Extrapolated values? 
~f ~$(a\ at R = 0 were obtained from the cross-plots and appear (the circled 
crosses) on figure 6. We have computed the area ,~P)T, under each of the five 
faired spectra of figure 6 and displayed the values of &?/rw on figure 7. Note that 
the value of ,/pT/rw = 2-31 at R* = 0.166 does not agree with our earlier value 
&77, = 2-19 (Willmarth & Wooldridge 1962). We have re-examined our 
previous work and found errors, which we understand, in the methods of measur- 
ing ,,lP/rw. 1 We attribute the scatter in the spectra a t  low frequencies, wS*/U, c I 
of figure 6, to unavoidable noise and disturbances in the wind tunnel, which had 
lost two turbulence screens and developed leaks and rattles that were not 
present previously (1962). The anomalous behaviour of the spectra above 
wS*/U, = 20 is caused by electrical noise in the amplifier of the transducer with 
R/6* = 0.104, which was made from barium titanate. The other transducers 
were made from lead zirconate (PZT-5) which is considerably more sensitive. 
The spectra of the three lead-zirconate transducers all come together above 
wS*/U, = 20 because the vibration of the tunnel wall or the pressure fluctuations 
from the background sound level in the wind tunnel begin to dominate those 

f The variation of $m(to) with R was approximately linear as R -+ 0. The extrapolation 
was not difficult nor did it appear uncertain. 

$ See the corrigendum Willmarth (1965). G. M. Corcos and M. K. BulI first pointed out 
this error to one of us (W. W. W.), 



Pressure jield beneath a turbulent boundary layer 89 

from the local turbulence in the boundary layer. The spatial extent of the back- 
ground sound pressure or vibration field will be much greater than that of the 
turbulent pressure field in the boundary layer at high frequencies. Therefore, 
all transducers are able to resolve the sound of vibration field and the spectra 
should coalesce. 

10' 

loo 

lo-' 

* - 
.?a3 c . 
;3" 10-2 
h 

3 z 

10-3 

10-4 

FIGURE 6. The measured and extrapolated dimensionless spectra of the wall 
pressure. 

RfS* J$T/TU, 

0.00 2.66 
0.061 2.54 
0.104 2.46 
0.166 2.31 
0.221 2.20 



90 W .  W .  Willmarth and F. W .  Roos 

?/ 

0 0.1 0 2  
RIP 

0.3 

FIGURE 7. The root-mean-square wall pressure determined from the spectra 
of figure 6. 0, experiment; 0,  from spectrum, R/6* = 0. 

5. Comparison of the experimental and computed corrections 
In figure 8 we have collected the results from the computed corrections 

($3, table 1) and the measured attenuation? ($4) of the wall-pressure spectra. 
The computed corrections for R* = 0.166 are uncertain at high frequencies, as 

1 0 . 1 6 6  I ' '. L 0 . 2 2 1  

1 -\ 
\ 1 ---&--A 

0 1 2 3 4 5 
w u c  

FIGURE 8. The ratio of the measured to actual power spectrum for various size trens- 
ducers as a function of oR/Uc. - , Experiment; - - - - , Corcos (1963); 0, equation 
(227, R* = 0.166, k* < 16; e, equation (22), R* = 0.166, k* < 18. 

t Data were taken from the faired curves of figure 6. 
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discussed in $3. The agreement between the computations with k* 6 18 and 
the experiments for R* = 0.166 at high frequencies is only a coincidence. 

The experiments show the true attenuation of the wall-pressure spectra for 
various size transducers at the Reynolds number of the experiments, R, = 38,000. 
The attenuation o f  the spectra q5m/q5 appears to be a function of oR/U, alone 
for small values of wR/Uc, but not for large values. In  $ 3 ,  below equation (22), 
we noted that q5m/q5 should be a function of oR/U, alone. Therefore, the assump- 
tion of a similarity expression, see equation (17 ) ,  for the measured cross-spectral 
density that was used in equation (22) cannot be correct for all values of < and w. 
It is approximately correct to use the similarity for corrections to the spectra 
at low frequencies but not at high frequencies. More exact limitations on the 
similarity are discussed in $7.  We note that the measured spatial spectrum 
Em(k,w)  should be zero for Ic = aJR* at any frequency w (see $3)-f. It is clear 
that this behaviour cannot be obtained from the similarity expressed in equation 
(17).  

6. Averaged properties of the derivative of the cross-spectral density, 
W ( < , w ) / a r ,  for < = 0 

Some information about the average radial derivative of the cross-spectral 
density can be obtained from the measurements displayed in figure 6. We 
consider the temporal Fourier transform of equation ( 9 )  with = 0, 

rm(o, w )  = q5m(W) = qE, 0) e(€)  dA(€) .  (26) Sm 
For a circular transducer O(c) (the 'correlation' of K(s )  in equation (8)) is propor- 
tional to the overlapping areas of two circles whose centres are separated by a 
distance e 

= o  e > 2R.  

Equation (26) becomes 

#m(W, R) = "lo2nS r ( 2 R a ,  8, w )  [cos-l ar. - aJ( 1 - a2)] adar.de, (28) 
z2 0 

and the derivative with respect to R at R = 0 

where r2 = g 2 +  r2. Evaluating the integral and normalizing, we obtain 

We show (a In I'/i3(wr/Uc))r=o, determined from experimental values of a$,/aR 
using equation (30) and figure 6 ,  in figure 9. In  figure 9 we have also shown 

t u, (.n = 1, 2, ...) are the zeros of J,(u).  
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(aln r/ar/S*),,, in order to display this quantity as a function of a length charec- 
teristic of the boundary layer rather than the wavelength 2nUc/w, whose meaning 
and interpretation is doubtful when ( is small (see 97). 

- OS8 * - 

I I I 1 1 0  
0 5 10 15 20 

us*/ u, 
FIGURE 9. Experimentally determined average value of the derivative of the cross-spectral 

density at < = 0 as a function of dimensionless frequency. 

7. Range of validity of the Corcos similarity hypothesis 
The ratio $,(w)/d(w) measured with different diameter transducers is not a 

function of wR/U, alone. If the measured cross-spectral density is similar, in the 
manner proposed by Corcos (1  964) and expressed in equation (1 7), the attenuation 
of the power spectrum $,I$ would be a function of wR/U, alone (see $5). 

From the measurements shown in figure 8, the lack of similarity (dependence 
on wR/U, alone) occurs at larger values of wRIU, when the transducer diameter 
increases. 27rUc/w is the characteristic wavelength h of the component of the 
convected pressure field that produces a pressure fluctuation of frequency w/27r. 
The value of the dimensionless parameter wR/Uc at which the curve $,(o)/$(w) 
of figure 8, for a given transducer, departs from the common curve describing 
the attenuation of the remaining transducers indicates the frequency above which 
the transducer attenuation no longer obeys the similarity hypothesis. The ap- 
proximate wavelength of the convected pressure pattern below which similarity 
is no longer obtained is then A/&* + 27rR*[wR/Uc]-1. From figure 8 this value of 
A/&* is 1.4 for R* = 0.166, 1.3 for R* = 0.104, and 1.5 for R* = 0.061. From 
an average of these values of h/S*, we conclude that for spatial separations of the 
order $A = 0*76* or less, Corcos’s similarity hypothesis is not valid when (as 
in the above discussion) the dimensionless frequency is greater than approxi- 
mately three, wS*/U, > 3. We do not mean to imply that there is any basic 
contradiction to Corcos’s work (Corcos 1964), since the experimental evidence 
for the similarity is obtained from measurements with > 0.666*, and Corcos 
(1964) discusses the fact that for small w[ /U,  there is no strong support for the 
similarity. 
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Another way to demonstrate the lack of similarity for small is to note that, 
if the original cross-spectral density were similar in the sense of equation (17), 
the average normalized radial derivative (a ln F/ar)r=o can be computed. Using 
equation (17) and the last term on the right of equation (29), the average radial 
derivative becomes 

2 ( a  caw'.;&)),=, = - [A'(O) +B'(O)]. 

Equation (31) is a constant as a direct consequence of the similarity expressed 
in equation (17). From the results shown in figure 9 it  is apparent that 

is not constant indicating that the similarity does not exist for vanishingly small 
c and frequencies above 06*/Um = 1.0. 

To complete this discussion of the validity of the similarity, we note that Bull 
(1963) and Bull et al. (1963) have measured the wall pressure correlation in 
narrow frequency bands for a wide range of frequencies and for /<I 2 0.826". 
They found (Bull 1963, figures 16 and 17, and Bull et al. 1963) that for low fre- 
quencies the similarity was not valid. According to the data there were departures 
from similarity for dimensionless frequencies 06*/Um less than approximately 
one and spatial separations greater than 6". 

Consider the quarter-infinite region 0 < wS*/U, < co, 0 < 1<1/8* < co. From 
our results and the measurements by Bull (1963) and Bull et al. (1963) the simi- 
larity expressed by equation (17) is not valid at the origin (w = c = 0) and in 
the regions wS*/U, > 3, I<l/S* < 0.7 and w6*/Um < 1, Icl/S* > 1. 

8. Additional remarks about the effect of finite size 
It is natural to ask whether the similarity (expressed in equation (17)) of the 

original cross-spectral density I?(<, w )  would be destroyed by measuring I' 
with a finite-size transducer. We suppose that r possesses the similarity ex- 
pressed in equation (17) and that A and B are exponential functions; y, /3 > 0. 
rm is determined from the temporal Fourier transform of equation (9). Then, 
because A and B are even functions of their arguments and because @(E) is a 
function of e/R (being zero for 8 2 2R, see equation (27)), the original similarity 
of I' is destroyed for spatial separations ([I < 2R or 171 < 2R but is retained if 
161 > 2R and 171 > 2R. If A and B are not represented by exponential functions 
the original similarity is lost for all spatial separations. It is not possible to 
make a general statement about the amount of destruction of the original 
similarity. One must consider a specific expression for I?(<, w ) .  

We can state that it will be difficult to learn much about the cross-spectral 
density when the separation is small, because the experimental measurements 
must be made with specially shaped (intersecting circular or square) transducers 
and then corrected for the effects of the finite size of the transducer. It would be 
best to make the transducer size as small as possible for this type of investigation. 
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9. Conclusions 
(1) The attenuation of the power spectrum of the wall pressure has been 

experimentally measured for circular transducers of four different diameters. 
(2) The root-mean-square wall pressure that would be measured by a vanish- 

ingly small transducer is J’ = 2 . 6 6 ~ ~  when the Reynolds number based on the 
momentum thickness R, = 38,000. 

(3) Corcos’s conclusion (Corcos 1963, 1964) that transducers used in contem- 
porary measurements were unable to resolve a large fraction of the total pressure 
signal is incorrect. In  one set of measurements (Willmarth & Wooldridge 1962), 
the unresolved root-mean-square pressure was 13 yo of the total root-mean- 
square pressure signal. 

(4) Existing measurements of the wall pressure correlation with finite-size 
transducers have not been made at small enough spatial separations between 
the transducers to allow accurate computation of the loss of resolution a t  high 
wave-numbers or frequencies. 

(5) The average radial derivative of the normalized cross-spectral density has 
been determined from the measurements of the attenuation of the power spec- 
trum and is not proportional to UJw as required by the similarity proposed by 
Corcos (1964). 

(6) The similarity proposed by Corcos (1  964) is not valid for spatial separations 
less than approximately 0*7S*, and dimensionless frequencies above three. 
From the work of Bull ( 1963, figures 16 and 17) and Bull et al. (1  963) the similarity 
is not valid when the dimensionless frequency is less than approximately one, 
and the spatial separation greater than approximately S*. 

The authors wish to thank Professor M. S. Uberoi for many valuable discus- 
sions and suggestions. This work was initiated at the University of Michigan and 
was supported by the Office of Naval Research under contract no. Nonr 1224(30). 
It was completed during a portion of the senior author’s Visiting Fellowship a t  
the Joint Institute for Laboratory Astrophysics. 
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